Postal address
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.
Secretariat phones
+91-22-2278 2244 +91-22-2278 2156
+91-22-2278 2777 +91-22-2280 4611 +91-22-2280 4610
Secretariat email
"theophys" The mailhost for DTP is

Please write to cmspjc at theory dot tifr dot res dot in for getting email announcements and any suggestions regarding CMSP Journal Club.

Condensed Matter and Statistical Physics Journal Club

Talk Details

Title Mixing of Diffusing Particles
Speaker V. Sasidevan
Date Wed, 06 Jul 2011
Time 14:30
Venue A 304


We study how the order of N independent random walks in one dimension evolves with time. Our focus is statistical properties of the inversion number m, defined as the number of pairs that are out of sort with respect to the initial configuration. In the steady state, the distribution of the inversion number is Gaussian with the average ⟨m⟩ &asymp N2/4 and the standard deviation &sigma &asymp N3/2/6. The survival probability, Sm(t), which measures the likelihood that the inversion number remains below m until time t, decays algebraically in the long-time limit, Sm &asymp t-&betam. Interestingly, there is a spectrum of N(N-1)/2 distinct exponents &betam(N). We also find that the kinetics of first passage in a circular cone provides a good approximation for these exponents. When N is large, the first-passage exponents are a universal function of a single scaling variable, &betam(N) &rarr &beta(z), with z = (m - ⟨m⟩)/σ. In the cone approximation, the scaling function is a root of a transcendental equation involving the parabolic cylinder equation, D2&beta(-z) = 0, and surprisingly, numerical simulations show this prediction to be exact.

References: E Ben-Naim Phys. Rev. E 82, 061103 (2010)

E Ben-Naim and P L Krapivsky, J. Phys. A: Math. Theor. 43 (2010)